Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans.
نویسندگان
چکیده
OBJECTIVES The aim of this study was to identify changes in the gene expression profile of Candida albicans associated with the acquisition of experimentally induced resistance to amphotericin B and fluconazole. METHODS C. albicans SC5314 was passed in increasing concentrations of amphotericin B to generate isolate SC5314-AR. Susceptibility testing by Etest revealed SC5314-AR to be highly resistant to both amphotericin B and fluconazole. The gene expression profile of SC5314-AR was compared with that of SC5314 using DNA microarray analysis. Sterol composition was determined for both strains. RESULTS Upon examination of MICs of antifungal compounds, it was found that SC5314-AR was resistant to both amphotericin B and fluconazole. By microarray analysis a total of 134 genes were found to be differentially expressed, that is up-regulated or down-regulated by at least 50%, in SC5314-AR. In addition to the cell stress genes DDR48 and RTA2, the ergosterol biosynthesis genes ERG5, ERG6 and ERG25 were up-regulated. Several histone genes, protein synthesis genes and energy generation genes were down-regulated. Sterol analysis revealed the prevalence of sterol intermediates eburicol and lanosterol in SC5314-AR, whereas ergosterol was the predominant sterol in SC5314. CONCLUSION Along with changes in expression of these ergosterol biosynthesis genes was the accumulation of sterol intermediates in the resistant strain, which would account for the decreased affinity of amphotericin B for membrane sterols and a decreased requirement for lanosterol demethylase activity in membrane sterol production. Furthermore, other genes are implicated as having a potential role in the polyene and azole antifungal resistant phenotype.
منابع مشابه
Inhibitory Effect of Fluconazole Combined with Amphotericin B on Fluconazole-Resistant Candida albicans Biofilm Formation
Background & Objective: The incidence of biofilm-related infections caused by Candida albicans has increased dramatically. C. albicans biofilm-related infections are more resistant to antifungal medications. This work was an attempt to examine inhibitory effects of fluconazole in combination with amphotericin B on fluconazole-resistant C. albicans biofilm. Materials & Methods: Fluconazole-...
متن کاملQuantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans
Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole resistant Candida albicans. Materials and Methods: Sixty clinical samples were ide...
متن کاملRegulation of ERG3, ERG6, and ERG11 Genes in Antifungal-Resistant isolates of Candida parapsilosis
Background: Candida parapsilosis is one of the five common strains of yeasts involved in invasive candidiasis. The expression analysis of sterol biosynthesis pathway genes, which are associated with resistance, can assist the better understanding of antifungal resistance mechanisms. Methods: The antifungal susceptibility of 120 clinical C. parapsilosis isolates was examined. The changes in the ...
متن کاملEffect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and -susceptible Candida albicans isolates
Background and Purpose: Candida albicans is the most common Candida species (spp.) isolated from fungal infections. Azole resistance in Candida species has been considerably increased in the last decades. Given the toxicity of the antimicrobial drugs, resistance to antifungal agents, and drug interactions, the identification of new antifungal agents seems essential. In this study, we assessed t...
متن کاملUsing PCR to Compare the Expression of CDR1, CDR2, and MDR1 in Candida Albicans Isolates Resistant and Susceptible to Fluconazole
Abstract Background and objectives: More Candida albicans strains are reported resistant to fluconazole in patients with AIDS, cancer and organ recipients. Fluconazole resistance can be attributed to changes in pathways of sterol biosynthesis, mutation in or overexpression of ERG11 and the expression of CDR1, CDR2, and MDR1. This study aimed to compare the ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 54 2 شماره
صفحات -
تاریخ انتشار 2004